Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms.
نویسندگان
چکیده
The offset Fourier transform (offset FT), offset fractional Fourier transform (offset FRFT), and offset linear canonical transform (offset LCT) are the space-shifted and frequency-modulated versions of the original transforms. They are more general and flexible than the original ones. We derive the eigenfunctions and the eigenvalues of the offset FT, FRFT, and LCT. We can use their eigenfunctions to analyze the self-imaging phenomena of the optical system with free spaces and the media with the transfer function exp[j(h2x2 + h1x + h0)] (such as lenses and shifted lenses). Their eigenfunctions are also useful for resonance phenomena analysis, fractal theory development, and phase retrieval.
منابع مشابه
Sampling of compact signals in offset linear canonical transform domains
The offset linear canonical transform (OLCT) is the name of a parameterized continuum of transforms which include, as particular cases, the most widely used linear transforms in engineering such as the Fourier transform (FT), fractional Fourier transform (FRFT), Fresnel transform (FRST), frequency modulation, time shifting, time scaling, chirping and others. Therefore the OLCT provides a unifie...
متن کاملSampling of linear canonical transformed signals
Linear canonical transforms play an important role in many fields of optics and signal processing. Well-known transforms such as the Fourier transform, the fractional Fourier transform, and the Fresnel transform can be seen as special cases of the linear canonical transform. In this paper we develop a sampling theorem for linear canonical transformed signals. The well-known Shannon sampling the...
متن کاملUncertainty principles for hypercomplex signals in the linear canonical transform domains
Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. In this paper, we extend the uncertainty principle for hypercomplex signals in the linear canonical transform domains, giving the tighter lower bound on ...
متن کاملSimulation of an Airy Beam with Optical Vortex under Fractional Fourier Transforms
First, this study obtained the fields of an Airy beam (AiB) with optical vortex (OV) for a Fourier transform (FT) system and a fractional Fourier transform (fractional FT) system; thereafter, their intensity and phase patterns were simulated numerically. The splitting on each line of the phase pattern indicates the position of an OV. The results show that the OV position will change when the po...
متن کاملA fast algorithm for the linear canonical transform
In recent years there has been a renewed interest in finding fast algorithms to compute accurately the linear canonical transform (LCT) of a given function. This is driven by the large number of applications of the LCT in optics and signal processing. The well-known integral transforms: Fourier, fractional Fourier, bilateral Laplace and Fresnel transforms are special cases of the LCT. In this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2003